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ABSTRACT

The paper presents some basic concepts of the one-parameter logistic latent-
trait medel, or the Rasch model. This model assumes that the probability of

/
a correct answer to 2u item is a function of two parameters, one representing
the difficulty of the item and one representing the ability of the person.

1n relation ro a concrete example, it is demonstrated how the parameters in

the model can Le estimated ana how the assumptions of the model can be tested.

Some possible areas of application of the Rasch model are also discussed.

A
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INTRODUCTION

It is of%en the case in educational and psychological measurement that we
want to assess the same dimension by using different items for different
groups of persons. For example, we may want to measure educational achieve-
ment several consecutive years without risking that the test items become

' !

known; or the level of performance may be much lower in one group of persons

than in another group of persons, so that the same items are not suitable.

A concrete example is presented below. Two three-item tests have been admin-
istered to twg samples of persons (Sample ! and Sample 2), each consisting

of 10,000 persons. The tests were constrgcted in such a way that one of the
items (item 3) is common to the tests, while all other items are different.
The following descriptive statistics were computed for Sample 1:

Proportion correct

Item

1 0.85

2 0.50 {  Mean'l.51 /
3 . 0.16 v sD 0.79

For Sample 2 the following descriptive statistics were computed:

Proportion correct

Item .
1 0.82

2 . 0.56 Mean 1.65

3 0.27 SsD 0.86
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For item 3'we can, of course, compare the samples directly; and we: find that
Sample 2 displays ; somewhat higher level .of performénce‘than Sample 1

(9.27 vs. 0.16). But about the rest of the tests not much can be said. It
can be observed, however, that the small mean difference in favor of Sample 2
on the total test is almost completely accounted for by item 3. This-qoés
seem to ic.iicate that the test -given to éaaple 2 was more difficult'than the
test given to Sample 1, since we other&lse would’expect about the same
difference in level of performance on the noncommon it?ms as on the common

item.

AN

Except for these general statemengs, it does seem quite impossible, however,
to use the descriptive statistics for a fuller comparison of the levels of
performance in the two samples. Only if we were able to determine how much
more ‘difficult the items given to Sample 2 are, might it be possible to
"tra&slate" the scores on this test in such a way that they are comparable

to scores on the test given to Sample 1.

It would, at first glance, appear to be quite a difficult task to determine
the level of difficulty of a set of items. Howéver, most of the remainder
of this paper will be devoted to a demenstration that this is in fact possi-
ble, aud we will show how our problem of comparing the levels of performance

of Samples 1 and 2 can be solved.

.

The solution is based on thé quite simple notion that level of per farmance
on an item is governed by two factors: by the ability of the person taking
the item and by the difficulty of the item. While the terms ability and
ditficdltz are quite firmly founded in our common sense, Weé can achieve a

slightly higher precision in these concepts through the following statements:

7

’
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1. For any given item, a person with a higher ability should have a

higher chance of passing th2 item than ¥ person with a lower ability..

2. For persons with the same level of ability, the chance of passing an

. easier item should be higher than the chance of passing a more difficult

item.

v

. Common sense could easily accept the view that for any given person the
.probaqility of answering a certain item correctly should be a function of
the person's ability and the item's difficulty, even though.other factors :
may also influence the result. But when we have just observed a certain
outcome -= a correctly solved item, say —— problems occuf if we want to
attribute that result to either of these two factors: The person may ha;e
solved the item correctly because of a high level of ability or because the
item was easy. Similarly, if we observe that a person fails an item, Ehis .
may be due to the fact that the item was quite difficult, or it may be that

the pefson has a low ability to solve this kind of item.

Thus, while common sense might accept th? concepts "level of difficulty"
and "level of ability," it is somewhat mind-staggering to consider.the
possibility of separating these factors in empirical data. There is,
however, a mathematical-statistical solution to this problem, which was
.originally contributed by Rasch (1960). The purpose of this'paper is to
present this solution and the accompanying model (the Rasch model) in a
simple manner; and, even though a series’of algebraic expressions will be
presented, it 1is hoped that the mathematiq@if} untrained reader can get at

least an intuitive understanding of the basic concepts of this test-theoretic

model. :

Q
ERIC
o v -

_ . o {




O

ERIC

Aruitoxt provided by Eic:

-7=

THE RASCH MODEL °

RN

In developing our case for how to separate person ability and item diffi-
culty, we Qill start with an assumption about how these factors relate to
the probability of answering an item correctly. We first must introduce
some notation, however. In all, there are n_%ersons who have answered

k items; we will refer to any specific item as item i and to any specific
person as person v: fhe outcome of the encounter between a person a;d an
item will be referred to as A . If person v solves item X correctly, we
denote that Avi=13 if the person fails the item, we denote that A,;=0,

We also assume that each person has a cerkain levei of ability which, for
person v, we denote 8 1t js assumed that 8, remains stable for at
least the dhr;tion of the test. We furthermore assume that each item has a

certain level of easiness (i.e., the inverse of difficulty) which we refer

to as ¢,
i-

We now can express in formal terms our assumpt ion about how person ability
and item easiness relate to the probability of answering an item correctly.

We assume that:
(1) P(a .=1) = V1 _
Vi
Thus, we assume that the probability that person v answers item i correctly

is a certain multiplicative function of the two factors -ability and easiness.

Jhe function may appear complex, but in fact it is not. Wnat it essentially
does is to express mathematically the two "commonsense' assumptions mentioned

earlier, namely, that a person with a higher level of abilit§ should have a
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higher probability of answering an item correctly than a person with a lower
level of ability and that the probability of answering an easier item
correct1y‘§hou1d be highér than the probability of answering a more difficult’’

item correctly.

This can be seen 1f we put some numerical values into (1). For e#ample, if
we assume that Ehe easiness parameter is 1 for a certain item, P(Avi=l) =

0.50 if g = 1;. if 8, = 3, then P(Ayj=1) = 0.75. If we assume that gy = 2,
we predict that for an item with . = 0,5, P(Ayj=1) = 0.50, and for an item

with €; = 2, we expect P{A,;=1) = 0.80.

1f the parameters attain values close to 0, the predicted value of P(Avi=l)
also is close to 0. If the parameters attain high values, the expected value

of P(Avi=1) is close to l, as is required by the fact that a probability must

lie between 0 and 1.

Thus, formula (1) is a convenient way of expressing mathematically what we
have already expressed verbaily. What is notable, however, is that (1) states
explicitly that the probability of a correct answer shall be a function of
item easiness and person ability only. Thus, no otber‘factor may influence
performance systematically, and in this sen;e (1) expresses a strong assump-

" tion, which may be wrong for a given set of dzta. Until proven wrong,
however, the simplicity of (1) makes it extremely useful.

»

We can, of course, also easily determine the probability of an incorrect

answer: .

() P(A,;=0) = 1-P(A,;=1) = 1~ To5-
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However, the expressions (1) and (2) do not solve our problem, since they

v

presuppose that we know the item easiness and person ability values. Our
task is to arrive at a method for finding out f;dm empirical data what these
values are. Of‘course, we can never find the true values of these paraﬁeters,
since that is impossible in an} statistical model, but we c;n try to derive
estimates of the parameters which are as close as possible ana,which, with a
sufficiently large sample of persons and items,.are iudistinguisﬁable from

A}

the true parameter values.

Estimating the item parameters

-

There are many ways in which methods for estimating perameters in a model
can be derived, but we will proceed in an intuitive, nonformal manner.

] >

Let's start with the very simple case in which one person with ability evhas

-

. . .. . . e
answered three 12935, 1,),k, with easiness parameters Ei’ Ej’ and y.

From (1) and (2) we can compute the probability of a correct or an incorrect
‘answer to each of the items. However, to be Yable to determine the probahil-
ities for patterns of responses of correcf and incorreet ans:ers.to a set of
items, we must make an assumption about §@ochastio.indepe;denbe. In this
case, the assumption of stochastic independence means essentially that the
probability of a correct answer to an item should not be influenéed by

. !

whether the person passes or fails the other’items in the test. Formally,

this can be expressed jn the following way for two items, i and j:

(
(3) P(A .=, Avj=1) = P(A,;=1) P(Avjzi)

vl
' -

That is, the probability of answering both .items correctly is under the

11
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v

assumption of stochastic independence given by the product of the probabil-

ities of answering each of the items ‘correctly.

The fact that stochastic inbependence is assumed does not imply that per-—
formance on the items is assumed to be uncorrelated in a gro;p of persons:
Percons with a high level of ability tend to get many items right, and
persons with a low level of ability tend to get few item; right, so if there
are differences in levels of ability among the persons in a sample, we
observe correlations between performance on the items. What the assumpt ion
of stochastic independence says is that at a given level of ability, v G.e.,

when ability is '"partialled out"), there should not be any correlations

betweer performance on different items.

On three items the person can, of course, obtain anything between zero and

three correct answers (rv)_ For ty=1 and ry=2, several different

response patterns are possible. By using (1) and (2) we can, under the
L)

assumption of stochastic independence, compute the probabilities of all

these response patterns:
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&

. .
Let's take a closer look at the three response patterns with r,=l. If we sum
the probabilities for these three patterns, we get the person's probability

of obtaining a score of 1 on these items, since there is no other way in

which a score of 1 can be obtained. Thus:

(s) p(r =l)=0VOC.+8VOE.+eV.€k _ev(£i+€j+€k)
v (1+6V~ci)(1+0V-cj)(l+6v-ck) (1+ev.ci)(l+3vocj)(1+9v.ck)

We next determine the conditional probability of obtaining a correct answer

on item i, given that a score of 1 has been obtained (“11)‘ The conditional

L

‘&
S

e C 13
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probability of an event A, given that an event B has happened, is written

P(AlB) and is défined P(A|B) = P(Ab). We thus get:

P(B) ,
8voei
o _ (1+6V-ei)(l+'6v~ej)(l+ev'ck) ) €5
- - N €.+¢€ .+¢
14 b, (e e tEL) i85k

(1+ev°ci)(1+ev~cj)(l+ev-ck)

In the same way we get for items j amd k:

€.
TT13 = £.+c.+sk '
@) -
€
Tik ~ ei+ek53; .

Interestingly enough, we find that the ability parameter disappears irom
these conditional probabilities. Thus, for each and every person who ob-

tains a raw score of 1, these conditional probabilities are the same.

The fact that the ability parameter does not appear at all in these condi-
tional probabilities i%4characteristic of the Rasch model, and it has an
-

. . . . Y . . .
important implication for estimation: We can estimate the item parameters

- without estimating the person parameters.

The three conditional probabilities above predict proportions of correct

answers to each of the items among the persons who have one correct answer.
Therefore, we can set up a system of equations and solve for the unknown

parameters.

14 .
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Let's do that for the data presented in the Introduction. Among the 4,083
!
persons in Sample 1 who had a raw score of 1, we observed the following

frequencies and proportions of correct sanswers:

Item Frequency Proportion
1 3,567 0.874

2 456 0.112

3 60 0.015

We thus can set up the following equations:

€1
Egregrey 0
€
2 _

(8) < €l+€2+€3 = .112
53 .
i, .015
{ .

We have three unknown item parameters and we have three equations. Unfortu—
nately, however, there is another constraint imposed on the proportions,
namely, that they always sum to l. We therefore have only two independent
restrictions imposed on the item parameters and can determine omly two of
them. One way to solve this problem is to put the parameter value for one

of the items equal to 1. In this way we do not determine the absolute values

of. the item parameters, but the easiness of the items relative to one of them.

If we set €7=1, we get the following equations:

15

S
&
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= .015 ,

cl+c3+l

By dividing the first equation with the gecond, we get €y = 7.80, and by

dividing the third equation with the second, we get €4 = 0.13. Thus, item 1

is about eight times as easy as item 2, and item 2 is about eight times as

easy as item 3.

So far, we have been able to get at least some kind of estimate of the Fela—
tive easiness of the thrée items given td Sample 1. But\we have used only a
part of our data, and for our érocedure to be ensirely satisfactory, we
should use the entire set of observed persons. However, in order for us to
use the other observations, they must yield essentially the same estimates.
We should, therefore, convince ourselves that, for the persons who scored 2
oh the test, we can get the same estimates, within statistical limits, as we

obtained for those who scored l.

The probability of obtaining a score of 2 is, of course, given by the sum

of the probabilities for each of the response patterns with raw score 2

>

(cf. &), i.e.:

2 o 2 2 . 2
ev €i€j+“v €i€k+ev chk _ ev (cicj+cick+sjck)
(l+6vei)(l+6vej (l+6v€k). (l+evei)(1+6vej)(l+8vck)

I6

(10) P(rv=2)

-




-15-

The probability of a correct answer to item i is given by the sum of the
probabilities of the response patterns which include a correct response to

item i, and we get the conditional probability, given r =2, as:
, :

2 2 )
ev c.cj+6v c.ck

i i
a ) (ltevci)(l+eveji(l+evck) _ ciej+eick
1] Q = 3
2i e, (cicj+eiek+cjek) eiaj+cick+cjck
(l+6vsi)(l+evcj)(l+6vck)

For items j and k we similarly get:

Ci€j+cj Kk
Tr2j = c.e.+€.€, +€.€
i3 7Lk 3Tk
12
€i€k+€j£k

b1 ==
2k €i€j+€i€k+fj€k

In the observed data for Sample 1, there were 4,017 persons who had a score
-
of 2, and for these persons the following frequencies and proportions of

correct answers were observed:

Item Frequency Proportion
= 1 3,955 0.985
2 3,531 0.879
3 | 548 0.136

Again, we can construct a system of equations by setting equal the conditional
probabilities of a correct answer to each of the items and the proportions

of correct answers to the items for the persons with an observed score of 2:
|

17
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4 5152+€153
= ,985
3 3 +3 3 +3_3
17271737027
€1€2FTe2E3
= ,879
¢
(13) ﬁ €1€9 €153 €9€3
e, e te, ¢
173 273 - 136
SECFTPACPCERTPLE

£
As before, we have three unknowns, but again there are only two independent

! . restrictions since the proportions always sum to 2. We solve this problem =~ -

in the same way as before, i.e., by setting the parameter value for item 2

equal to 1. We can then solve the equations for the two remaining item
3

parameters. We get the results: €1=7.84 and €3=0.14. These values are very

close to those obtained for score group l, and the small variations we

observe can be accounted for by stochastic factors which inevitably come

into play even in a sample as large as this one.

Thus, we have shown that it is possible to get highly similar estimates of .
the relative easiness of items from groups of persons who have a different
number of correct answers. But what about the two remaining score groups,
i.e., those with a score of 0 and those with a score of 3? Unfortunately,
these are quite useless for the purpose of estimating the item pérameters,
which is seen from the fact that in these groups the preditted proportion of
correct answers is the same for all items. Thus, we have to exclude from.

consideration those persons who have obtained scores of 0 or 3 on the test.

ERIC 18

Aruitoxt provided by Eic:




17~

Even though it has been shown that we can use either score group 1 or sgore
group 2 and still get the same results, our estimation procedure is not yet

entirely satisfactory: We would like to employ simultaneously information

from both these groups of persons to get one common set of estimates.

An easy way of doing that is to put all the information into one set of equa-‘
tions. In doing so, however, we.should not use the proportions of corvect
answers but the frequencies, so that, the score groups influence the result

in relation t6 their size. What we predict is then the total number of
correct answers to ea;h item, which we call 8. If we regtr to the number

of persons with r correct answers as n, we can write the equation for item 1i:

If we now replace 7 with the corresponding expressions in terms of the item
P ri P g P

parame ers (cf. 6, 7, 11, and 12) which we have previously derived, we get for

the three-item test given to Sample 1 'the .follcwing -equations:

4083 ¢ 4017 (e € tE €EH)
. 1 172 "1°3
+ = 3567+3955
Eyteytey T gyETE EgTEE,
4083 ¢ 4017 (e e, +e,€,) .
2 172 "2~3
(15) + = 456 + 3531
€l+€2+€3 €1€2+Cl€3+£2€3
4083 €5 4017(€lc3+6253)_
€4E-+€- T € € *E €tCEq) 60 + 548
1 -2 3 172 "173 -2-3
k .

19
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.. . . . . X
48 before, there 15 a constraint imposed on the system since rnr=Lsi, and we

put equal to 1. After a series of algebraic manipulations, we can solve

the equations and. we get the result:®) =7.862 and €3 =0.139. Again we find
that these estimates are close to those we have obtained earlier, as might

be expected from the quite large size of the sample. -

We now have arrived at a procedure for ootaining estimates of the itém

'9arameters. This procedure yields so-called maximum likelihoodd estimates,

and since it is based on concitional expectations, it is referred to as a
conditional maximum likelihood (CML) procedure. We will not go into any
depth here about different estimation procedures (see instead, Fischer 1974;
Wright and Douglas 1977); suffice it to point out that the CML estimates
have very good properties and that it is a general ch;racteristic of the
kinds of models with which we are dealing here that maximum likelihood

estimates are obtained if observed sample characteristics are predicted from

model parameters (cf. Andersen 1980).

.

Even in our very simple three-item formulation, the mathematical expressions
involved in the estimation procedufé are quite complex and, with just a few
more items, they would fill several pages. There fore, we need a simpler

notation/;gr a general formulation of the estimation equations.

The complexity steme from the sums of products of the item parameters which
appear in the conditional probabilities (i.e., in the ﬂri). One of these

-
ajpears in the numerator (i.e., "above the line"), the other in the denom=

inator (cf. 6, 7, 11, and 12). .

The latter involves, for .score r, the sum of all possible products of the

item parameters taken r at a time. For example, for r=1 we had (cf. 6):

20

-
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&
and for r=2 we got (cf. 11):

(17) €1€2+€1€3+€2€3 ‘

These expressions are called the elementary symmetric functions of order
r in the item parameters and we will denote them Yoo Yo is defined to be 1.
1

In the numerator of Ty we had for item it and for r=l the following

(cf. 6):

.(18) El

For r=2 we had (cf. 11):

P

(19) €1€,%e €3

These sums of products are related to the Y, in a relatively simple way. If

from Y we take away Ei by crossing out all those products in which € does not
r ) .

appear and by crossing out £ in those products in which it does appear, we

get the elementary s&mmetric function of order r-1 in all parameters except ¢

- (1)

and we denote that Y r-1 . For example, from (17) we get y | as’

(2¢0) ¢ ,+¢
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If we then multiply this expreasion with €;, we get:
+
(21) €€, €164

% . .
which is the same as (19). . Since the denowinator of the formula for T,y was Yp ,

we get:

Rid = ClYl(l) d /
21 Y5

(22)

The general form of the expression is, of course:

(i) ‘
c. Y
_ i 'r-l
(23) Ty ——izr——‘

and we now can write the general form of the estimation equations ¢

as (cf. 14):
(i)
k=1 €, y__; n ’
(24) s, = g _i_?E_l__E (i=1,...,k)

These equations can be solved by hand only when there are two or three
items, but with larger sets of items they can be solved relatively easily

with the help of a computér (e.g., Fischer 1974; Gustafsson 1979a, 1980a).

Estimating the person parameters

We now have shown how parameter values reflecting the relative easiness of a ,

set of items can be determined. But our task is only partially completed:
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We have still not dealt with the person parameters (or the ability parameters),

since these disappeared from our estimation equations for the item parameters.
Fa

*

In principle, we could proceed in the'same way with the pérson parameters as
we did with the item parameters. That is, we could determine the conditional
probabilities of obtaining different raw scores, given the observed item
scores, and we would then find that the item parameters disappear, leaving
us with equations in the person parameters only. But we would not be able
to solve these equations, because the elementary syhmetric functions in the

- -~ ~perspn péréﬁétéfs aré of immense complexity even for very small samples of

persons.

We will, therefore, take another approach, using the item parameters we have
already determined. It has already been concluded thac if predictions
involving the parameters to be estimated are equatéd to observed sample

characteristics, we can get estimates of the unknown parameters. .

The basic model (1) expresses the probability of a correct answer to an item
for a certain person. The sum of these probabilities gives us the expected
nuﬁber of correct answers on the setvof items for this person, and we can put
this expression, with the already estimated item parameters inserted, equal

to the observed raw score, i.e.:

’ k evei ’
(25) r, = I =5
v i=1 l+8vci

This expression does not take into account which particular items the person

answered correctly, so all persons with the same raw score must get the same

estimated person parameter. Therefore, we only need to solve (25) for each
O
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of the 1 to k~1 different raw scores on a set of k items {for r=0 and r=k no

estimates can be obtained).

We will illustrate this for raw scores 1 and 2 on our three-item test, using
the item parameters estimated from the total sample. Thus, we get tue

following equations:

) 7.8661 . 191 . -.14..1
l.+7.8691 1+191 1+.14u1
and
~ &4
1+7.86€32 1+1e2 1+.14\2

Each of the equations resulted in a polynomial and, after a sequence of

algebraic manipulations, we get the following resultsx 61 = ,32 and

6, = 2.97,

Interpretations of the parameters

Having shown that it is possible to separate person ability and item easiness
theoretically, and elso that it is possible to compute estimates of these
parameters from a set of observational data, it may be asked how these

parameters can be interpreted.

Let us first summarize our results. On the basis of the total sample
(except, of course, those persons with zero and three correct answers) we

obtained the following results:

24




A}
Item Easiness ~ ., Raw score Ability

1 . ©7.86 : 0.32 \
*2 1.00 2 2.97 ///1’/
- »
3 14 . .
(% *

A higher item parameter indicates an easier item. However, we may want

our scale to reflect item difficulty instead, so that a higher value
indicates a more difficult item. This is easily achieved 1f we take the

inverse (i.e., 1 . ) of the item paraméters. We then get the following item

parameters:

\
Item Diff'culty
1 0.13
N 2 1.00
3 o 7.14

\
1f we call these difficulty parameters , we can rewrite our basic model
4 N

(1) in the following way:
[
Y . i
A b T

1) = i ‘
(26) P(Avi—l) . -
1 +

01‘ <"D

i .

This formulation of the model and (1) give, of course, identical results.
On the.difficulty scale, the parameters can range from 0 to poaitive infinity.
However, on such a scale, the parameters may be difficult to interpret, and
especially so sinces thé person parameters and the itsm parameters combine
multiplicatively. To solve this problem, we can make a new transformation

i Ve
in which we.take the naturil logarithm of both the item parameters and the

' 25
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person parameters. We then get the following set of parameters (observe
that only two decimal values are presented but that the calculations have

been carried out with greater accuracy):

ltem Log difficulty Raw score Log ability
I -2.06 1 -1.14
2 0.00 2 1.09
K . 1.97
If we get log * = ¢ and log 0v=§v , we can reformulate (26) into:
+
QXP(iv-oi) ,

(27) P(A .=.}) =
vi
l+exp (&, oi)
Again, this formulation of the model gives results identical to (1) and (26)
(granted, of course, that in each of the formulations of the model we insert’

the correct set of parameters).

We will make one more transformation of our scales. It will be remfmbered
that, when the item parameters were estimated, we chose to set e, equal to

1 {and, thereby ¢,=0 ). ™The fact that we cannot estimate the absolute

item difficulties but only relative item difficulties is a problem that is
mcre often solved in another way, however; namely, by imposing thé constraint
that the log difficulty parameters should sum to O (or, equivalently, that
the product of the easiness parameters should be 1). How?ver,‘we can easily
make this transformatidn now. The oi parameters above sum to -0.09. To ,

change this to a sum of 0, we have to add 0.03 to each of the oi parameters.

But if we do that, we also have to add 0.03 to each of the § parameters,
v

.
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since otherwise (27) will not give the same results as betore the transforma-

N

tion. We then get the following set of parameters:

Item Raw score
01 . EV
1 -2.03 1 -1.11
2 0.03 2 1.12

3 2.00 *
In most applications of the Rasch model, the item parameters are expressed in
this way, i.e., on a log difficulty scale on which the parameters sum to 0.
However, other transformations are also common), for example, so that negative

numbers are avoided (see, e.g., Wright and Stone 1979).

Let us now take a look at some statements that can be made on the basis of
& «

the estimated parameters. -

The odds of success to an item are defined as the ratio of the probability of

success to the probability of failure, i.e.:
exp(s,-0,)

P . l+exp(f_-o.)
(28) A . = T = v 1
vi 1-pP . 1

vi

= exp(gv'Oi)

o

l+exp(sv-oi)

For example, if the nrobability of success is 0.75, the odds are 0.75/0.25=3,
The ratio of odds of success to two items, i and j, is®

A, _ exp(&v-o.)

- = expl(o.-0,
exp(gv-cj) P 03.01)
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We find that this ratio is governed exclusively by the item parameters;
again the person parameter disappears. This, of course, indicates that the
ratio is constant over the range of ability and that we can compare items

independently of persons.

The same types of statements about relative odds can also be made about
persons. If we relate the odds of success for person v to the odds of

guccess for person u on item i, wé find that:

A exp(g_~0 )
(30) Vi o= v 1 = exp(&v-gu)

ui exp(Eu-Oi)

Here the item parameter disappears and we can conclude that the relative
odds are invariant over items; i.e., we can compare persons inde;endently
of items. Quite intgresting practical consequences follow from this: If
the pefsons have been given gigferent items, we still can compare their

abilities, granted, of course, that we have previously determined the

relative difficulties of the items.
The possibility of making comparison of persons independéatly of items,

‘ and of‘items independéntly of persons, forms the core of Rascn's 'theory
of specific objectivity" (Rasch 1960, 1977). Expressed in simple terms,
this model requires that in comparing different objects" (here persons),
different "agents" (here items) should give the sawe rank order among the
objects. That is, if we rank order‘the persons in a sample on the basis
of their performance on one set of items, we would'ekpect thi; rank ordering

»

to be the same for afother set of items which purports to measure the same

dimension. If this is not ‘the case, we would regard the two sets of items

Q .!)é;
L~ ’ ~
ggigé; . .
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as measuring different dimensions, and we should hesitate before using
them interchangeably. The theory of specific objectivity is, therefore,
basically a theory of unidim;nsionality; i.e., it states that only one
dimension should be measured at the same time and that all the items which
are used should be homogeneous in the sense that they all measure the same

dimension.

Testing the Assumptions of the Rasch Model

We have already indicated some of the possibilities for practical applications
of the Rasch model. However, before we-proceed to treat some of these
applications in greater detail, it is necessary to discuss the limits of the

aprlicability of the Rasch model.

Even though ic can be shown in theory that it 1s possible to separate
person ability and item difficulty from the answers to a set of items,
this does not always happen in practice. This is because the model 1is
based on a series of assumptions which may not be fulfilled, and if these
assumpt ions are violéted, we cannot estimate item parameters independently

of persons, and we cannot estimate ability independently of items.

N

Expressed briefly and in simple terms, the following assumptions are made:

1. We assume that the probability of a correct.answer to an item is a
simple function of a person parameter and an item parameter, as 1s

expressed in (1).

2, The items are assumed to be homogeneous; i.e., it is assumed that all

items measure the same ability.
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3. Local stochastic independence is assumed; 1.e., it is assumed that

the r;onnse to one item does not affect the response to another .
item. It is also assumed that the responses made by ope person do .

not affect the responses of another person.

It can be shown that assumption 3 formally reduces to assumption 2 (cf.

Gustafsson 1980b), so we only have to deal with the first two assumptions.

The basic question to decide 1is whether one or both of these assumptions
are not fulfilled. If that is the case, the Rasch model will not fit the

data, since the model and the data are based upon incompatible assumptions.

- \
One way to do this is, cf course, to look at the test items to see whether
there is anything in them which may cause a violation of the assumptions.
For example, if the items can be divided into groups which clearlfrmeasure
different abilities, we canQbe sure that the assumption of unidimensionality.
ie being violated. If, to take another example, there is ample opportunity

of guessing the correct answer, as is often tne case in multiple-choice

items, we also may expect that the data will not fit the model since (1)

does not allow for guessing.

-

But however ugeful such procedures may be, it would, of course, be desirable

N ~
if the model itself could tell, as it were, if a set of data does or does

not fit.

»

It will be remembered that we have shown for our three~item test for Sample
| that the relative difficulties of the items remained roughly the same
whether we used persons with one correct answer Or persons with two correct

~

answers to estimate the parameters. Below are shown frequencies of correct

O

EMC Qr ’

P o] Ui
|
|
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answers to three items in another test for persons with one and two correct
answers:
Frequency
Item r=1 r=2

1 988 4,110

2 224 ' 3,169 °' n,=1,368
3 156 1,527 N, =4,403
Applying the same procedures as before, we get the following estimates
of the item parameters for the two groups of persons:
Item r=1 r=2
1 ~-1.11 ~-1.24
2 0.37 0.20

3 0.74 1.04

in this case, it is,obviously not true that the relative difficulties of
the items remain invariant over the score groups. The reason for this is
that the data analyzed here have resulted from a true-false test, in

f

which there is ample opportunity to guess the correct answer.

.

Thus, we find that whgn the data do not fit the model, it is no longer true
that the item parameters are invariant over groups of persons. To inveétigate
this propérty of the model, we can thus estimate the item para;eters within
groups of persons with a different number of correct answers, to see whether
we get the same results. When the sample of persons is small, there will,

of course, be quite a variation among the item parameters due to chance

factors, and it may be difficult to judge whether there are any true dif-

ferences among the item parameters. Andersen (1973; cf. Gustafsson 1980b)

’

\‘1‘ / |
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has, however, suggested a procedure that gives a summary statistical test of

the equality of the item parameters.

LN

épplying this test to Sample 1, we find the test statistic to bexL =0.19

with 2 degrees of freedom. Obviously, we cannot reject the null hypothesis
that the item parameters es;imated within the two score groups are’equal.
For the data presented in this section, the test statistic isx2 =23.59.
With 2 degrees of freedom this is a very highly significant value, and we

must conclude that there are significant differences among the item parameters

. for the two score groups.

This test investigates whether the item parameters are invariant over groups

B

of persons, and it can be applied with the sample of persons divided in any

possible way. But the test does not investigate whether a set of items is

~

unidimensional or not. To do that, we should study whether the person

4
parameters\are invariant over groups of items or not.

+
To study wha%her the person parameters are invariant over groups of items,

we.could, of course, divide the items into subsets suspected to measure

different abilities, and then for each person &tudy whether the person

parameters estimated from the different groups of items are the same.

But such a test would involve a very large number‘of comparisons, and it

would be a very unstable test since each person parameter would, in most

cases, be estimated from few iéems. Martin-Lof (1973; cf. Gustafsson .
1980b) has, however, suggested a test of the invariadce of each person

patameter over groups of items in which the actual estimation of each

person parameter is avoided. This test requires, however, at least two

o
oo
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items in each group, so we cannot illustrate its use on our data. The

application of the test is quite straightforward, however.

If we have investigated the invariance of item paraweters over groups of
persons and the invariance of person parameters over groups of items, and

if we have been able to conclude that the data fit the model, we can

-proceed with any application of the model we would like. However, in

many cases, it is possible to carry out 'sensible applications of the model
even though it has been necessary to concluqe that one‘or more of the
assumptions m;y have been violated. This is because.the presence of small
violations of the assumptions need not matter at all. for the intended

.
application. But if the model is to be used in the presence of such viola-

tions, it must be made likely that the violations of the assumptions do not

carry any negative implications for the validity of the conclusions drawn.

™
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APPLICATIONS OF THE RASCH MODEL

We can now return to our question in the Introduction: How do we compare

scores-obtained on different tests by different groups of .persons?

s

We have already estimated the item parameters for Sample 1, and doing

that for Sample 2 as well, we get the following results:

Item Sample 1 Sample 2

1 | -2.03 -1.51
2 0.03 0.00

3 2.00 1.51

It will be remembered that item 3 was common for the two tests, whereas the
other items were 2ll different. Sin;e we have concluded that item parameters
are (or can be) invariant over groups of persons, we might perhaps expect to
find the same estimaté of O3 in the two samples. But this is obviously not
the case, there being a substantial difference in the two estimates of the

difficulty of item 3.

The reason for this is that the difficultizs of the items can only be

»

determined relative to each other. ‘Thus, if item 3 is administered along
with two eééy items, it appears t; have a high difficulty, and if it

is administered along_with two difficult items, it appears to have a low
difficulty. But-we know that the true difficulty of an item is the same
%ndependently of which persons have answered it and which other items
happened to be administered along with it. The?efore, we can relate the
difficulties of, noncqmmon'items to each other by using common items as

points of reference.

3¢
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The difficulty of item 3 is 0.49 units higher in the Sample 1 test than in
the Sample 2 test. This must mean ihat items 1 and 2 in the Sample 1

test test are easier than the corresponding items in the Sample 2 test.

To translate the item difficulties of the twe sets of items so that the
‘difficulties of all items are directly comparable, we must make tpe trans-
formation in such a way that the difficulty of gtem 3 is the same in the
two tests. ~w§ must, therefore, subtract 0.49 from item 3 ip the Sample

1 test, and, of course, also Zrom_ the other two items in this test (we

could, of course, also have added 0.49 to the items in the Sample 2 test).

After this transformation we get the following item difficulties:

Item ° Sample 1 Sauple 2

1 d -2.52 -1.51 ;
2 -0.46 0.00 .
3 1.51 1.51

The item difficulties are now expressed on the same scale, and we can

. ’ . .
estimate the person parameters corresponcing to different raw scores on

]
the two tests:

Raw score Sample 1 test Sample 2 test
1 -1.60 -0.94
2 © 0.63 0.94

If we compare these Person parameters corresponding to different raw
scores on the Sample 1 test with those we have previously estimated, we

fird that there is a constant difference of 0.49.

s

We now could proceed to estimate a person parameter for each of the persons

in the two samples. We also could compute the means and the standard

5
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deviations of the person parameters and.compare the samples with respect ‘to

4
these statistics. The frequency distributions of raw scores are presented
7/

below,;:

Raw score

. 0 1 2 3
Sample 1: 906 4,083 4,017 994
Sample 2: 926 3,316 4,088 1,670

It is quite obvious, however, that this procedure would not give us a true
picture of the difference in level.of perfofmance of the two groups of
persons. The problem is that we cannot estimate the person parameters

for persons with a raw score of 0 and 3, and since there are more persons
with a score of 3 in Sample 2 than in Sample 1, we would underestimate the

level of performance of Sample 2 if we excluded these persons.

There is a solution to this problem, however. Andersen and Madsen (1977)
have shown that if the distribution of person parameters is assumed to be

of a certain kind, it is not necessary to estimate each of the person
parameters; instead, parameters describing the distribution can be estimated.
In this procedure it is not necessary to exclude persons who have no correct
answer ov only correct answers, and it can be applied whenever a reasonable
assumption can bé made about the distribution of person parameters. Often,

a normal digtribution can be assumed. It is, unfortunately, impossible to
treat here the deFails of this quite ccmplex procedure, but with the help

of a computer, it is a simple matter to determine the parameters of the

assumed distribution and also to perform a statistical test of whether the

assumption made 1is reasonable or not.
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Assuming that in -each of the samples the person parameters are normally
distributed, the two parameters (mean and stand deviation) which describe
the normal distribution have been estimated, using the difficulty parameters

on the common scale:

~

Sample 1 Sample 2
Mean -0.46 , 0.30
SD 1.01 1.00

We find that the SD's are the same, but that the mean of Saﬁple 2 is 0.76

units (or.about 75 percent of an SP) higher than the mean of Sample 1.

The validit§ of tiis conclusion to large extent hinges on the correctnesg
of the assumption that tHe person parameters are normally distributed, .
The stdtistical test of the assumption of normality’éives for Sample 1

X2 =1.04 and for Sample ZX2 =0,22. With | degree of freedom none of these
values is significant, so we don't find any reason to doubt the correctness

of the assumption of normality.

It can be noted that we are able to draw the conclusion that the distribution
of person -parameters is noimal in spite of the fact that the distribution of
raw scores, especiaily for Sample 2, is quite far from normal. This is, of
course, because the test given to Sample 2 was somewhat too easy for this

group of persons, resulting in & negatively skewed distribution of raw scores.

We now have solved the problem formulated in the Introduction to this paper,
and we have also indicated the basic properties of the Rasch model. It is
obvious, however, that this model lends itself to the solution of measurement
problems other than this particvlar‘one, and we will now briefly indicate some

of these possible areas of application,

\

37
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Test linking and equating; item banks
4

The problem that we have dealt with is ofzen referred to ac a problem of :
test linking. In practical applications, this problem of estimating item

parameters, and, thereby, also person parameters, on a common scale is -

approached in the same way as we have done it, except that more than one
item is usuélly common between the tests. Often ten or more Such iteuis
are used. When more than one common item is used, the means of the diffi-
culties of these items are compared across the tests to determine the
constant to be added or subtracted from one or more of the sets of estimated
) =¥

item parameters.

Some' mes one group of persons has been given two or more tests measuring
the same dimension. If we then want to express raw SCOres obtained on
different tests on t@e same scale, this problem of tes® equating is easily
solved with the Rasch model: All that needs to be done is to estimate the
item parameters with the items in all tests pooled and then to use these

item parameters to compute the person parameters corresponding to each raw

score on the different tests.

By applying repeatedly linking and equating procedures, it may be possible

to determine on a common scale the item parameters for a large set of

items. Such item banks may, of course, be extremely useful since it is

possible to construct a virtually infinite number of test forms, which )

all give person parameters on the same scale, by selecti.g items from the
;

bank. Special designs to optimize the creation of item banks have been

developed (see e.é., Wright 1977; Wright and Stcne 1979).




O
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e
Test optimization; level testing and tailored testing

When a parameter in a model is estimated from data, the estimate can have
varying degrees of precision. For example, if\ﬂ small sample of persons
is used,®he estimates of the item parameters will tend to be unstable;
if we estimate the item parameters anew from an equally small sample, we
may observe quite large differences between the sets of estimates. Not

only the number of persons and items 1in a éample determine the precision

with which the item and the person parameters can be estimated, but also
the relative size of the parameters themselves. The statistical information

(1) about the parameters contributed by a response is given by the expression:

exp(&v—oi)

(31) 1. = P(A_.=1)(1-P(A .=1)) = .
iv vi Vi (1+exp(£v-ci))‘

I iv 1s highest when the probability of a correct answer is 0.5. The

P

—information about the person parameter contained in the responses to k

items is the sum of the information contributed by each of the responses,

The standard error of measurement of the person parameter (SEM[gv 9]

can be obtained from (32). It is:

-t

(33) SEM(E ) = 1 ,

VITE ). "
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When the number of items is large (larger than 20-30), the SEM (gv )
is normall& distributed, which makes it possible to construct confidence

intervals around the estimated person parameter.

It is quite obvious that the difficulties of the items in a test affect
ethe SEM (Cv) and also that the precision with which we can estimate any
person parameter is a function of the person parameter itself.

*

For example, if we have a test of twenty-five items all with difficulty 0,
the SEM (£ ) for persons with an ability of 0 is 0.4. But for persons '

with ability -2.0 (and 2.0), the SEM ( Ev) is 0.62. To achieve an equally
' C

low SEM ¢ ) for these levels of ability, we would need to administer as

.

many as sixty items.

v

.But, of course, another possibility would be to administer twenty-five

items of difficulty -2.0 to the per;ons who have ability around -2.0. Doiﬁg
this would gain not only shorter testing time but perhaps also a.greater

mot ivation in taking the test, since it .is likely to be quite frustrating

to try to answer a large aumber of items when the probability of a correct

. s
answer ig low, and quite boring to do so when the probability of a correct

answer is high. ‘

'Such a procedure would illustrate the use of level tests, with different
levels of difficulty for different groups of persons. It is necessary,
of course, to have some preliminary estimate of tge level of ability of
the persons in order to be able to assign the different forms. Such a
preliminary estimate may be obtained either from a short pretesc or from

regults achieved on previously administered tests.

40
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But the procedure can, of course, also be developed into & tailored testing

procedure, in which, for each person, the response to one item determines

hd

which item will be given next. It is not difficult to devise such a

sy§tem on the basis of the Rasch model, granted that the test items can

be administered by a computer. ,
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THE RASCH MODEL AND OTHER TEST-THEORETIC MODELS

¢ .
We will end this introduction to the Rasch model by briefly indicating

differences apd similarities between this model and some other test-

-

theoretic models.

Classical Test-Theory .

In classical test-thzory (e.g., Gulliksen 1950; Lord and Novick 1968), the
concept of item difficulty has a prominent place too. The statistic most
commonly used to index item difficulty is the proportion of correct answers

to the item, or the p-value. But as we saw in our empirical example, the

L3

é

p-value varies with level of §bi1ity of the sample. This statistic, therefore,
cannot be generalized from one sampie of persons to another, unless they are
random samples from the same population. In the Rasch model, in contrast,

the estimates of item difficulty remain invariant ftrom ;ne sample of persons

to another, at least as long as the data fit the model.

In classical test-theory, the observed number of corréct answers is most

commonly taken to represent person ability. Scores obtained on different
g
sets of items are not comparable, however, unless the test forms have been

caref '1ly equalized. Inﬁgpe Rascn model, too, ability is estimated from the

number of correct answers, but since item difficulty is tgken into account,
results obtained on different sets of items may be compared. fﬁﬂ

*

For purposes of item screening, statistics which reflect the relation

s

between item performance and test performance are relied upon within

classical test-theory. Among such measures of item discrimination, the

biserial and point-biserial correlagiion coefficients 4re the ones most

12
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frequently used. When the purpose of the. test is to reflect individual
differences in pe;formance, items with a high relation to overall test
performance ;re soéght.- In the Rasch model, there is no concept which
corresponds to the indices of item discrimination, since it is assumed that
all items have th& same degree of relationship with ability. Therefore,
when items are ;elected for inclusion in a Rascﬁ scale, the criterion is

evenness of discrimination, rather than highness of discrimination. However,

nothing prevents Rasch scales to be constructed from items with high and
-

even discrimination (cf. Gustafsson 1980b).

Reliability is’ the measurement concept which plays the most important

part in classical theory. This concept reflects the accuracy with wh'

a group of individuals can be rank ordered on the basis of test per formance.

The observed test variance is assumed to consist of two independent parts:

true variance, reflecting the true individual differences in performance;

and error variance, reflecting random variation. A simple definition

of the coetfficient of reliability is the ratio of true variance to observed

variance. Since the samplegvariance of ability enters into the estimate of
- .

the reliability coefficient, this cocfficient expresses properties of both

the test and the sample of persons.

In the Rasch model the concept of reliability plays a subordinate part,
because this measurement model is oriented toward estimation of individual
ability, rather than toward comparison of individuals. The SEM (% ) is,
therefore, the most important index of the accuracy of measurement in the

Rasch model. .

-~
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In conclusion, we have seen a recurring difference between classical

<

test-theory and the Rasch model; in the former there is a dependence on
‘specific samples of persons and items, whereas in the latter this is not the
case. It is obtvious, theref;re, that when an applicatio; requires measurement
of the same dimension with different seti of items, the Rasch model offers
great advantages. In other, less demanding measurement applications,

however, the greater complexity and stricter assumptions of the Rasch

model may make classical test—theory a good alternative.

Other item—response models

.

The Rasch model may be viewed as one member of a larger family of models,
all members of which have the characteristic that an explicit model is
specified for the relation between observable item performance and an
unobservable trait assumed to underlie performance. These item-response,

or latent-trait, models all allow estimation of invariant person and item

parameters.

The Rasch model is the simplest of these models in the sense that only
UL parameter; the difficulty, is used to specify item characteristics. In
other models, more parameters are used to characterize the items. Thus,
in the so called three-parameter model (Lord and Novick 1968), each item is
described by three parameters: difficulty, discrimination, and guessing.
The difficulty parameter has an interprgtation simili;r to that in the
Rasch model. The discrimination parameter represents t@e~degree of rélation-
ship between item performance and abi%ity, and the guessing parameter
-

. represents the expected level of performance on the item for personms with

very low ability.
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This model thus makes less strict assumptions of the nature of the observa-
tions than does, the Rasch model, and it can be expected to fit a wider range

of empirical data than the Rasch model. There is a price to be paid for

this geﬁerality, however: the three-parameter lacks the conceptual simplicity
and elegance of the Rasch model; estimation of parameters in the model
presents great technical difficulties and requires large samples of persons
and items; and the model is considerably more difficult to apply than is the

Rasch model.

There has been-a rather heated debate on the relative virtues of different

item-response models, some arguing that the Rasch model 1is always the

<

proper choice, and others arguing that the Rasch model may never be expected

+ to fit data. Such\extreme positions deem unnecessary, however, since it

[N

appears that each of the models has both strengths and weaknesses.

~

‘The major weakness of the Rasch model is that it involves such strong

assumptions. In particular, it cannot be expected to fit multiple-choice
items. For some applications, such as equating tests of widely differing
difficulty, violation of the assumption of nb guessing may have very

serious implications (Gustafsson 1979b), so great care must be exercised

if the Rasch model is to be applied to items of the multiple-choice type.
“t

The major weakness of the three-parameter model is that results obtained

with this model are not dependable unless the samples of items and personms "

are large. This model is, therefore, best suited for large-scale applications
of multiple~choice tests, whereas the Rasch model seems best suited for
’
)\ 3 - » . - . '
small--and large-scale applications in which guessing 1s not a major

~

factor imn test performance.
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